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ABSTRACT
The timely and precise repair of DNA damage, or more specifically DNA double-strand breaks
(DSBs) – the most deleterious DNA lesions, is crucial for maintaining genome integrity and cellular
homeostasis. An appropriate cellular response to DNA DSBs requires the integration of various
factors, including the post-translational modifications (PTMs) of chromatin and chromatin-
associated proteins. Notably, the PTMs of histones have been shown to play a fundamental role
in initiating and regulating cellular responses to DNA DSBs. Here we review the role of the major
histone PTMs, including phosphorylation, ubiquitination, methylation and acetylation, and their
interactions during DNA DSB-induced responses.
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Introduction

Constant exposure to a variety of harmful endo-
genous and exogenous factors puts eukaryotic cells
at continuous risks for thousands of DNA lesions
every day [1]. These DNA lesions, if not repaired
correctly, can lead to adverse consequences that
endanger the fitness and viability of the cell and/or
organism [1,2]. A timely and appropriate cellular
response to DNA damage is, therefore, crucial and
essential, and as such, the cell has evolved
a network of signaling pathways to respond to
DNA damage, which is collectively termed DNA
damage response (DDR) [1–3]. DDRs are diverse
in terms of modes of DNA damage repair, includ-
ing: direct protein-mediated reversal, mismatch
repair, base excision repair, nucleotide excision
repair, and double-strand break (DSB) repair
[1,4]. Different DDRs are utilized depending on
the types of DNA lesions and the cell cycle posi-
tion of the damaged cell [5]. However, DDRs
usually follow a general principle: the presence of
a lesion in the DNA can cause alterations in DNA
structure or replication stalling, which is recog-
nized by sensor proteins. The sensor proteins in
turn recruit signaling and downstream effector
proteins, which initiate signaling cascades that
lead to various cellular processes to resolve the
DNA damage or eliminate the cells with irrepar-
able injury [1].

DNA DSBs are among the most deleterious
types of DNA damage because they can poten-
tially lead to a loss or alteration of genetic mate-
rial [6,7]. DSBs are mainly repaired by
homologous recombination (HR) and non-
homologous end joining (NHEJ), as shown in
Figure 1A. HR is the main DSB repair mechan-
ism in the S and G2 phase of the cell cycle when
the undamaged homologous chromosome or sis-
ter chromatid is available to be used as a template
for the repair of the DNA breaks. On the other
hand, NHEJ is more dominant in G0 and G1
phases, and unlike HR, NHEJ repairs the DNA
DSBs by directly ligating the two broken ends,
which might result in small changes to the DNA
sequences [8]. Breast cancer 1 (BRCA1) is impor-
tant for the HR repair pathway, while p53-
binding protein 1 (53BP1) plays a crucial role in
NHEJ [8,9]. To ensure that the DNA DSBs are
repaired with the appropriate repair mechanism,
BRCA1 and 53BP1 mutually antagonize each
other during the repair process [8].

The generation and repair of DNA lesions
occurs in the context of chromatin, and the chro-
matin status at sites of DNA damage has been
shown to influence the DDR [10]. In eukaryotes,
chromatin is comprised of DNA and protein com-
plexes called nucleosomes. Each nucleosome con-
sists of 146 base pairs of DNA wrapped around
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a core histone octamer comprised of two copies of
each histone: H2A, H2B, H3, and H4. The nucleo-
some is then connected by a linker DNA and
histone H1 [4,10]. The chromatin is a highly orga-
nized and dynamic structure that regulates DNA
accessibility during different biological events.
Chromatin generally exists in two forms: a tightly
packed heterochromatin and a loosely coiled
euchromatin. The highly ordered chromatin struc-
ture can be regulated by different processes, one of
which is the post-translational modifications
(PTMs) of histones [6]. The amino terminus or
the “tails” of the histones are protruding from the
histone core and open to various PTMs. As
a result, the PTMs of histone tails tightly correlate
with many biological processes, including DDRs
[2,4,10]. As illustrated in Figure 1B, PTMs on the
histone tails are diverse, and some of these mod-
ifications have been shown to play important roles
in DDRs.

In the event of DNA DSBs, histone modifica-
tions are critical for the generation and regulation
of cellular responses to the damage. Histone PTMs
can unravel chromatin structure for DNA accessi-
bility, propagate the initial signaling of the break,
facilitate the recruitment of repairing proteins, as
well as restore the initial state of chromatin after
the DNA breaks are resolved [2–4,6,10]. In this
review, we highlight the major histone modifica-
tions and their functions in orchestrating the
response to DNA DSBs.

Major posttranslational modifications of
histone subunits in DNA DSB damage
response

Phosphorylation of histone H2A.X

H2A.X is a member of histone H2A family, and it
comprises about 2–20% of the H2A proteins in
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Figure 1. Histone modficiations and DNA double-strand break repair. (a) DNA double-strand breaks can be repaired by non-
homologous end joining (NHEJ) or homologous recombination (HR). p53-binding protein 1 (53BP1) plays a crucial role in NHEJ, while
breast cancer 1 (BRCA1) is important for HR. 53BP1 and BRCA1 mutually antagonize each other’s actions during the repair process.
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mammalian cells [11,12]. The phosphorylation of
serine 139 (S139) on H2A.X (γH2A.X) is one of
the prominent DDR-associated histone marks. In
general, within seconds after DSBs are induced,
H2A.X is rapidly phosphorylated, passing through
a half-maximal value at 1 minute [12]. H2A.X
molecules in a small region near the DSB site are
phosphorylated first, following by the H2A.X
molecules at increasing distance from the break
site [13]. However, the dynamics of γH2A.X for-
mation are not the same across the genome.
γH2A.X foci form more efficiently in euchromatin
than in heterochromatin [14,15]. γH2A.X was also
shown to spread from DNA DSB sites in
a bidirectional but not symmetrical manner,
depending on the transcription state of the genes
surrounding the DSBs or depending on other
repairing and signaling proteins [16,17].
Although there are some exceptions, it is accepted
that when a DNA DSB is induced, γH2A.X foci are
quickly formed and the γH2A.X levels reflect the
number of DSBs in the cell [11].

The phosphatidylinositol 3-kinases (PI-3Ks),
a family including DNA-dependent protein kinase
(DNA-PK), ataxia telangiectasia mutated (ATM),
and ATM and Rad3-related kinase (ATR), are
implicated in the phosphorylation of H2A.X in
response to DNA DSBs [11]. Although ATM was
shown to be the major kinase responsible for
modifying H2A.X upon ionizing radiation (IR)
[18], under most normal growth conditions, both
ATM and DNA-PK can phosphorylate H2A.X in
a redundant and overlapping manner [19]. In gen-
eral, upon the formation of DSBs, PI-3Ks act as
DNA damage sensors; they are loaded rapidly onto
the break, get activated, and phosphorylate numer-
ous substrates including thousands of H2A.X pro-
teins in the chromatin surrounding the DSBs. The
phosphorylation of H2A.X was shown to precede
and initiate the accumulation of repair factors and
checkpoint proteins, including Mre11-Rad50-Nbs1
(MRN), mediator of DNA damage checkpoint
protein 1 (MDC1), breast cancer 1 (BRCA1), p53-
binding protein 1 (53BP1), E3 ubiquitin-protein
ligase 68 and 168 (RNF68 and RNF168). The
phosphorylation of H2A.X is also important for
the recruitment of chromatin-remodeling com-
plexes and proteins, such as chromatin-
remodeling ATPase complexes INO80 and SWR1

or the histone acetyltransferase TIP60, to DSB sites
[3,6,20–22]. However, it was also shown that
γH2A.X might have a bigger role in retaining
and concentrating these repair-related proteins at
sites of DNA damage rather than in recruiting
them to the sites of damage [21]. Nevertheless, it
is evident that γH2A.X plays an important role in
enhancing the repair of DNA lesions by facilitating
the opening of the chromatin structure and form-
ing a platform for the accumulation of DNA
damage repair factors [11].

Because γH2A.X signaling indicates the sites of
DNA DSBs or unresolved DNA damage [11,23], the
dephosphorylation of γH2A.X is important to mark
the completion of the DNA repair process. There are
two proposed mechanisms for γH2A.X to be
returned to the original state after the resolution of
DNA breaks: γH2A.X might be removed from chro-
matin by histone exchange or dephosphorylated by
a protein phosphatase [24]. There are several phos-
phatases that have been shown to play a role in
dephosphorylating γH2A.X. Protein phosphatase
(PP) 4 has been shown to dephosphorylate γH2AX
at the sites of DSBs [25], while PP2A directly binds
and dephosphorylates γH2A.X at more distal sites.
PP2C or wild-type p53-induced phosphatase 1
(WIP1), which dephosphorylates a variety of DNA
damage repair proteins, has also been shown to
directly reverse γH2A.X [26]. In summary, unlike
PI-3Ks that phosphorylate H2A.X to initiate DDRs,
phosphatases help restore the un-phosphorylated
form of H2A.X to turn off DDRs.

The dephosphorylation of histone H2A.X at
tyrosine 142 (Y142) is also essential for the for-
mation of γH2A.X at sites of DSBs. Under non-
stressed conditions, Williams–Beuren syndrome
transcription factor (WSTF), also known as bro-
modomain adjacent to zinc finger domain 1B
(BAZ1B), phosphorylates Y142 of H2A.X [27].
Under DNA DSB stress, the protein tyrosine
phosphatase eyes absent (EYA) dephosphorylates
the phosphorylated Y142 of H2A.X. This was
shown to be important not only for maintaining
a phosphorylation/dephosphorylation cycle of
H2A.X C-terminus, ultimately maintaining
γH2A.X formation, but also for enhancing the
recruitment of other factors to the damage sites
[27,28]. The dephosphorylation of Y142 at H2A.X
by EYA was also shown to be a determinant of
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repair/survival versus apoptotic responses to
DNA damage by regulating the recruitment of
either repair or apoptotic factors to the tail of
γH2A.X [28].

Along with histone H2A.X, other histones can
also be phosphorylated in response to DNA
damage. The serine 14 (S14) on the N-terminal
tail of histone H2B is rapidly phosphorylated at
the sites of DNA DSBs [29]. Phosphorylated H2B
was shown to accumulate into foci after IR-
induced damage and work together with γH2AX
to establish a heterochromatin-like state around
damaged DNA for repair factors to concentrate
onto [29]. Interestingly, the phosphorylation of
H2B at S14 was also shown to be associated with
apoptosis when the DNA damage repair is unsuc-
cessful [30]. Additionally, histone H4 can also be
phosphorylated at serine 1, and this phosphoryla-
tion event can facilitate the re-joining of DNA
breaks in response to methyl methane sulphonate-
and phleomycin-induced DSBs in yeast [31].
Briefly, phosphorylation is an important histone
modification for the inititiation and the termina-
tion of DDRs.

Ubiquitylation of histone H2A

Ubiquitylation has been shown to regulate various
cellular processes through constructing a flexible
protein-protein communication system with eight
structurally and functionally different chains
linked through distinct residues [32].
Concordantly, studies have shown that the ubiqui-
tylation of histone tails also plays an important
role in DDRs.

One of most well-studied ubiquitylation marks
in DDRs is the E3 ubiquitin-protein ligase 68 and
168 (RNF8/RNF168)-mediated histone ubiquityla-
tion. As discussed in the previous section, in
response to DNA damage, γH2AX is generated
rapidly, which then recruits the mediator protein
MDC1 to the chromatin [12,18,33]. MDC1 is then
phosphorylated by ATM [34,35] and facilitates the
recruitment of a complex of RNF8 and ubiquitin-
conjugating enzyme E2 13 (UBC13). The RNF8/
UBC13 complex initiates the synthesis of lysine 63
(K63)-linked ubiquitin conjugates at the damaged
sites [36–38]. The target of RNF8/UBC13-
mediated ubiquitylation was believed to be only

histone H2A/H2A.X [37,38], but recently, studies
have shown that RNF8/UBC13 might also ubiqui-
tylate non-nucleosomal proteins and linker his-
tone H1 [39,40]. However, despite the diversity
of RNF8/UBC13 substrates, the role of K63-
linked ubiquitin conjugates that RNF8/UBC13
initiates at DSB sites is to provide an initial bind-
ing platform to recruit another E3 ubiquitin ligase
RNF168 to the DNA breaks [40,41].

Although RNF8 is the first E3 ubiquitin ligase
recruited to the sites of DNA breaks, RNF8 alone
is not enough to sustain the ubiquitylation status
[42]. Therefore, the presence of RNF168 is
required for proper activation of DDRs. RNF168
physically interacts with RNF8-mediated ubiqui-
tylated H2A/H2A.X and accumulates at the break
sites [41,42]. RNF168, similar to RNF8, acts in
concert with UBC13 to further catalyze the synth-
esis of K63-linked ubiquitin conjugates to histone
H2A/H2A.X on lysine 13–15, amplifying the
initial DNA damage-induced ubiquitylation to
a threshold required for the physiological func-
tion of this compartment [39,41,42]. In turn,
RNF8/RNF168-mediated ubiquitylated H2A/
H2A.X mediates the recruitment and accumula-
tion of mediator proteins, such as 53BP1 and
BRCA1, at the lesions on the chromatin to pro-
mote repair mechanisms, cellular responses, and
survival following DNA damage stress [41,43].
Recently, RNF168 has also been shown to pro-
mote non-canonical lysine 27 (K27)-linked ubi-
quitin conjugates to histone H2A/H2A.X, which
is strictly required for DDRs and can be directly
recognized by other DDR mediators, including
53BP1 and BRCA1 [32].

In addition to RNF8 and RNF168, γH2AX and
MDC1 also recruit the polycomb group protein
B cell-specific moloney murine leukemia virus inte-
gration site 1 (BMI1) to the sites of DNA damage
[44,45]. At the sites of damage, BMI1 catalyzes the
monoubiquitylation of histone H2A/H2A.X at lysine
119 and contributes to efficient DNA repair [44,45].
In the absence of BMI1, the recruitment of 53BP1
and BRCA1 to the DNA damage sites is impaired
[45]. In the absence of both BMI1 andRNF8, cells are
more sensitive to IR than cells lacking either BMI1 or
RNF8 alone, indicating that BMI1 and RNF8 have
overlapping roles in the ubiquitylation of histone
H2A/H2A.X, and that they cooperatively but
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independently contribute to a proper and efficient
response to DNA DSBs [44,45]

Because the DNA damage-induced ubiquityla-
tion plays an important role in facilitating the
cellular response to DNA damage induced stress,
histone ubiquitylation cascades need to be fine-
tuned. Indeed, studies have shown that histone
ubiquitylation is regulated by several mechanisms.
The accessibility for the E3 ubiquitin ligases can be
limited by the formation of higher order of chro-
matin structure [46,47]. The size of the RNF168
nuclear pool can be regulated by the E3 ubiquitin-
protein ligase thyroid hormone receptor interactor
12 (TRIP12) and the ubiquitin-protein ligase E3
component n-recognin 5 (UBR5) [46,47].
Additionally, the ubiquitylated products at the
damage sites can be reversed by deubiquitylating
enzymes [46,47].

However, histone H2A/H2A.X is not the only
histone that can be ubiquitylated in response to
DNA DSBs. Histone H4 is shown to be selectively
monoubiquitylated by B-lymphoma and BAL-
associated protein (BBAP) at lysine 91, which con-
tributes to the associated DDR [48]. This raises the
possibility that histones other than H2A/H2A.X
might also be ubiquitylated in response to DNA
damage. In summary, in response to DNA DSBs,
in a γH2AX- and MDC1-dependent manner,
RNF8 and BMI1 are recruited to the sites of
DNA breaks. At the sites of DNA damage, RNF8
recruits RNF168 and together, they work with
UBC13 to catalyze the formation of ubiquitin con-
jugates to histone H2A/H2A.X at lysine 13–15.
Meanwhile, BMI1 facilitates monoubiquitylation
of histone H2A/H2A.X at lysine 119. These ubi-
quitylation events of histone H2A/H2A.X trigger
the ubiquitylation cascade that leads to the recruit-
ment, accumulation, and retention of 53BP1 and
BRCA1 to the DNA lesions to promote proper
DNA DSB responses [32–45].

Methylation of histone H4

Histone methylation also plays an important role
in regulating DDRs. The methylated lysine 20 of
histone H4 (H4K20) is one of the histone methy-
lation marks known for their roles in DDRs. The
methylation of H4K20 is not induced by DNA
damage, but it is pre-existing in the cell [49].

There is no significant change in the levels of
H4K20 mono-, di-, or tri-methylation detected in
response to DNA damage [50]. However, in non-
stressed cell conditions, the methylated H4K20
residues are in the heterochromatin state, and
with the introduction of DNA DSBs, an area of
open chromatin is generated, exposing the preex-
isting methylated H4K20 residues [49,50]. When
exposed, the methylated H4K20 serves as
a docking site required for the recruitment of
53BP1 to the sites of damage [49,50].
Interestingly, although H4K20 methylation levels
show no change globally, H4K20 methylation
levels increase locally in response to DNA DSBs
[50,51]. The localized increase in methylated
H4K20 can be mediated by the histone methyl-
transferase multiple myeloma SET domain
(MMSET), which is recruited to DSBs in
a γH2AX- and MDC1-dependent manner [51].
The localized increase in methylated H4K20 can
also be mediated by the histone methyltransferase
suppressor of variegation 4–20 (Suv4-20) [52].
DNA-damage-induced γH2AX recruits proliferat-
ing cell nuclear antigen (PCNA), which then facil-
itates the recruitment of the histone
monomethylatransferase PR/SET domain-
containing protein 7 (PR-set7) to the DNA
damage sites [53]. PR-set7 mono-methylates
H4K20 and facilitates subsequent Suv4-20 recruit-
ment and catalysis, required to generate dimethy-
lated H4K20 [52]. The exposure of methylated
H4K20 and the localized increased level of methy-
lated H4K20 at DNA damage sites, together,
strongly facilitate the recruitment of 53BP1 to
DSBs.

Another histone methylation mark that has been
shown to be important for the recruitment of 53BP1
to DNA DSB sites is the methylated lysine 79 of
histone H3 (H3K79). By screening radiation-
sensitive yeast mutants for DNA damage checkpoint
defects, disruptor of telomeric silencing 1-like
(DOT1L), a conserved H3K79 methyltransferase,
was identified [54]. Indeed, when DOT1L is sup-
pressed, the recruitment of 53BP1 to the DSBs is
inhibited [54,55]. Similar to H4K20, H3K79 maps
to the histone core, which makes the methylated
H3K79 inaccessible in normal cell conditions due
to the highly-ordered chromatin structure. The dis-
ruption of the tightly packed DNA structure by DSBs
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leads to the exposure of methylated H3K79, resulting
in the recognition of 53BP1 [55].

It has been suggested that the simultaneous recog-
nition of γH2AX and methylated H4K20 or methy-
lated H3K79 by two different domains of 53BP1 is
needed to provide an affinity to facilitate the recruit-
ment and accumulation of 53BP1 to the DNA DSB
sites [50].However, the initial recruitment of 53BP1 to
the sites of DSBs in H2A.X-defficient cells is not
impaired, suggesting that the methylated H4K20 or
methylated H3K79 are essential for the initial recruit-
ment of 53BP1 while γH2A.X is required for the
retention of 53BP1 at DSB sites [55]. Also, the methy-
lated H4K20 andmethylated H3K79 work together to
ensure the proper recruitment of 53BP1 to the sites of
DSBs in the cell. It has been shown that themethylated
H3K79 mark, while negligible during S phase, is
required for IR-induced 53BP1 foci formation during
G1 andG2phasewhen theH4K20methylation level is
low [56].

The methylated lysine 9 of histone 3 (H3K9),
a heterochromatin-associated mark, also plays an
important role in DNA DSB responses.
However, unlike the methylated H4K20 and
methylated H3K79, methylated H3K9 acts
upstream of the signaling cascade. This methyla-
tion is mediated by the histone methyltransfer-
ase suppressor of variegation 3–9 homolog 1
(Suv39H1) or its homolog Suv39H2 [57–59].
Suv39H1 and Suv39H2 are recruited to DSBs
and contribute to the increase of the methylation
levels of H3K9 at DSBs [60]. Methylated H3K9
can be directly recognized by the acetyltransfer-
ase TIP60; this positively regulates the acetyl-
transferase activity of TIP60 and leads to the
acetylation and activation of the kinase activity
of ATM and the initiation of ATM-dependent
signaling [61]. Suv39H1/Suv39H2 can also
methylate histone H2A.X on lysine 134 at DSBs
and facilitate the phosphorylation of H2A.X on
serine 139 (γH2A.X) [62]. In short, histone
methylation plays an important role in various
aspects of DDRs including the unraveling of
high-ordered chromatin structure, the initiation
of the signaling cascades, the recruitment and
retention of proteins at the sites of the DSBs,
as well as the facilitation of DNA break repair
processes.

Acetylation of histone H3

It has been shown that cells with mutated TIP60
protein that lacks the acetyltransferase activity
show defects in DNA DSB repair as well as in
apoptotic signaling in response to unrepaired
DNA breaks, indicating the crucial role of acetyla-
tion in regulating DDRs [63].

The acetylated lysine 56 of histone H3 (H3K56) is
one of the acetylation marks shown to play an impor-
tant role in DDRs. In humans, CREB-binding protein
(CBP) and histone acetyltransferase p300 acetylate
H3K56, whereas the NAD-dependent deacetylase sir-
tuin 1 and 2 (SIRT1 and SIRT2) deacetylate the acety-
lated H3K56. The histone chaperone anti-silencing
function 1A (ASF1A) is required for the acetylation
of H3K56, while the histone chaperone chromatin
assembly factor-1 (CAF-1) is required for the incor-
poration of histones bearing the acetylated H3K56
into chromatin [64,65]. The acetylation status of his-
tone H3 has been shown to have profound effects on
the chromatin structure [66]. H3K56 acetylation is an
abundant modification of newly synthesized histone
H3 molecules that are incorporated into chromo-
somes during S phase [66,67]. This acetylation mark
largely disappears in G2 phase, and it is maintained at
a very low level outside of S phase in normal condi-
tions withoutDNAdamage [66,67]. In the presence of
DNA damage, the acetylated levels of H3K56 remain
high due to the action of DNA damage checkpoint
proteins, and this histonemark co-localizes with other
proteins at the sites of DNADSBs during DDRs. This
suggests that the acetylation of H3K56 creates
a favorable chromatin environment for DNA repair
[64,66–68].

If the acetylation of H3K56 is important for
facilitating the DNA repair, the deacetylation of
H3K56 is also important for signaling the comple-
tion of the DNA repair process. Deacetylation of
H3K56 can be carried out by two distinct mechan-
isms: 1) The rapid recruitment of the histone
deacetylases HDAC1 and HDAC2 to the DNA
damage sites can promote the hypoacetylation of
H3K56 and restore the chromatin status following
DDRs [69] and 2) the acetylated core histone can
also be degraded by proteosomes following the
repair of damaged DNA, and the newly synthe-
sized core histones can be incorporated to form
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intact nucleosomes [70], marking the completion
of the cellular response to DNA damage stress.

Similar to acetylated H3K56, acetylated H4K16 is
also indispensible for generating efficient DDRs and
influential for DNA DSB repair [71]. In humans, the
protein that is responsible for the majority of the
acetylation of H4K16 is the male-absent-on-the-first
(MOF) protein [72]. In response to DNA damage,
MOF has been shown to directly interact with ATM,
and this interaction is critical for IR-induced ATM
activation [73,74]. Moreover, MOF is important to
maintain sufficient acetylation levels of H4K16 to
provide a chromatin structure permissive for efficient
DNA damage repair [71]. When MOF is depleted in
the cell, the acetylation level of H4K16 is reduced,
leading to delayed or abrogated IR-induced focus
formation of the mediator proteins MDC1, 53BP1
and BRCA1 and their downstream effector proteins
at the sites of DNA damage [71,75].

In brief, the acetylation of histone tails is important
to create a favorable environment with loosely com-
pacted chromatin structure, that becomes readily
accessible to the DNA repair machinery. Once the
repair is completed, histones can be deacetylated by
histone deacetylases, and the highly compacted chro-
matin structure is restored.

Interplay of histone modifications during
DDRs

Different histone modifications, such as phosphor-
ylation, ubiquitylation, methylation, and acetylation
play important roles in different aspects of DDRs
(Figure 2). Despite their distinct roles, different his-
tone modifications also work cooperatively to gen-
erate proper and efficient cellular responses to DNA
damage (Figure 3).

When a DNA DSB occurs, the histone
methyltransferase Suv39H2 is recruited to the
DNA breaks [60]. At the sites of DSB,
Suv39H2 methylates H2A.X at lysine 134, facil-
itating the phosphorylation of H2A.X at serine
139 [62]. Suv39H2, at the break sites, also
methylates H3K9, and this methylated H3K9
provides the moiety to recruit TIP60 [60,61].
When TIP60 acetyltransferase directly interacts
with methylated H3K9, the acetyltransferase
activity of TIP60 is activated, leading to the
acetylation and the complete activation of ATM
[60,61]. The fully activated TIP60 can also acet-
ylate histone H2A.X, which stimulates the sig-
naling cascade in later steps [76]. Fully activated
and acetylated ATM then can interact with
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2406 H. T. VAN AND M. A. SANTOS



Suv39H2-mediated methylated histone H2A.X
with high affinity and modify histone H2A.X
with the phosphorylation at serine 139
(γH2AX) [11,12,18,62]. γH2AX consequentially
recruits the mediator protein MDC1 as well as
the E3 ubiquitin ligases RNF8 and RNF168 to
the sites of the break [41]. RNF8 and RNF 168,
together with UBC13 ubiquitylate H2A.X, which
requires its prior acetylation [76]. The sequential
acetylation and ubiquitylation of H2A.X facili-
tate DDRs through enhancing the histone
dynamics and promoting the accessibility of the
chromatin to the DNA repair machinery [76].
This, however, is only one simple example of
how different histone modifications can work
together to promote an effectual cellular
response to DNA damage stress. Further inves-
tigations and studies will most likely uncover
other important interactions between different
histone modifications in DNA damage
responses.

Concluding remarks

DNA damage responses are a mesh of different
signaling pathways that activate various cellular
processes such as cell cycle checkpoints, DNA
break repair and apoptosis to ensure genome
integrity in response to DNA damage stress.
In response to DNA damage, individual PTMs
of histones, such as phosphorylation, ubiquity-
lation, methylation, and acetylation, have been
shown to play important roles both indepen-
dently and cooperatively in generating and reg-
ulating DDRs. Here, we illustrated the roles of
these PTMs of histones in the events of DNA
DSBs. It is established that the PTMs of his-
tones are important not only in facilitating the
reorganization of chromatin structure for the
accessibility of DNA repair proteins but also
in assisting the recruitment, accumulation, and
retention of repair proteins at the sites of DNA
DSBs. However, further studies are needed to
decipher the relationship between different his-
tone modifications as well as how the dynamic
network of histone modifications can be used to
determine and to interpret or predict the cellu-
lar responses and outcomes in response to DNA
DSBs or other types of DNA damage.
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