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Abstract

Background: Herbal medicine represents a rich yet complex source of bioactive compounds,
offering both therapeutic potential and toxicological risks. Methods: In this study, we
systematically evaluated the biological effects of three traditional herbal extracts—Mentha
longifolia, Scrophularia orientalis, and Echium biebersteinii—using Caenorhabditis elegans as an
in vivo model. Results: All three extracts significantly reduced worm survival, induced lar-
val arrest, and triggered a high incidence of males (HIM) phenotypes, indicative of mitotic
failure and meiotic chromosome missegregation. Detailed analysis of germline architecture
revealed extract-specific abnormalities, including nuclear disorganization, ectopic crescent-
shaped nuclei, altered meiotic progression, and reduced bivalent formation. These defects
were accompanied by activation of the DNA damage response, as evidenced by upreg-
ulation of checkpoint genes (atm-1, atl-1), increased pCHK-1 foci, and elevated germline
apoptosis. LC-MS profiling identified 21 major compounds across the extracts, with four
compounds—thymol, carvyl acetate, luteolin-7-O-rutinoside, and menthyl acetate—shared
by all three herbs. Among them, thymol and carvyl acetate significantly upregulated
DNA damage checkpoint genes and promoted apoptosis, whereas thymol and luteolin-7-
O-rutinoside contributed to antioxidant activity. Notably, S. orientalis and E. biebersteinii
shared 11 of 14 major constituents (79%), correlating with their similar phenotypic out-
comes, while M. longifolia exhibited a more distinct chemical profile, possessing seven
unique compounds. Conclusions: These findings highlight the complex biological effects
of traditional herbal extracts, demonstrating that both beneficial and harmful outcomes
can arise from specific phytochemicals within a mixture. By deconstructing these extracts
into their active components, such as thymol, carvyl acetate, and luteolin-7-O-rutinoside,
we gain critical insight into the mechanisms driving reproductive toxicity and antioxidant
activity. This approach underscores the importance of component-level analysis for accu-
rately assessing the therapeutic value and safety profile of medicinal plants, particularly
those used in foods and dietary supplements.
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1. Introduction

While medicinal plants have long been used in traditional remedies, their molecular
effects—particularly on genome stability and reproductive health—remain poorly under-
stood. This gap is especially significant given the rising use of herbal formulations with
uncharacterized toxicological profiles. To address this gap, we investigated three herbal
species native to Armenia—Scrophularia orientalis, Mentha longifolia, and Echium biebersteinii.
All three are known for their strong bioactivity (Figure 1 and Table 1), but their potential
roles in DNA damage repair and apoptosis have not been fully validated. We hypothesized
that extracts from these herbs may interfere with DNA repair pathways and germline
development due to their bioactive components.
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Figure 1. Venn diagram summarizing the reported biological activities of the genera Scrophularia,
Mentha, and Echium based on the published literature. This diagram emphasizes the shared bi-
ological properties among the three genera from which the herb extracts were derived. Notably,
all three have been consistently reported to exhibit antioxidant, pro-apoptotic, anti-inflammatory,
cytotoxic, anti-proliferative, and antimicrobial activities. Non-overlapping regions represent addi-
tional, genus-specific effects reported in the literature. Detailed information can be found in Table 1,
Supplementary Data S1 and S2.

Table 1. Taxonomy, Characteristics, and Distribution of Three Medicinal Herbs.

. T Sample Used in
Genus Taxonomy Characteristics Distribution This Study
Defined as 18-30 species
across five sections: Widely distributed:
Mentha, Preslia, Audibertia, Aromatic, Northern Pakistan,
Eriodontes, Pulegium. herbaceous Europe, Nepal, India, o
Mentha Includes M. spicata, perennials with Western China, Mentha longifolia
M. aquatica, extensive stolons [4] Germany, UK, Egypt,

M. arvensis,
M. longifolia [1-4]

Nigeria, Turkey [1]
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Table 1. Cont.
. e Sample Used in
Genus Taxonomy Characteristics Distribution This Study
Genus Scrophularia Mostly hgrbaceous Temperate Asia,
. . i perennials; also Mediterranean S .
Scrophularia (Scrophulariaceae); [ Scrophularia orientalis
~300 species [5] subshrubs, biennials, Europe, North
P or annuals [6] America [7]
, Native to North
Genus Echium Lo .
(Boraginaceae); Annual, biennial, or Africa, Europe,
Echium . L perennial flowering  Macaronesia (Azores,  Echium biebersteinii
~60 species, 30 in Canary

Islands, 24 endemic [8]

plants [8,9]

Madeira, Canaries,
Cape Verde) [8,9]

1.1. Scrophularia orientalis L.

The Scrophularia genus (Scrophulariaceae) includes 200-300 species across temperate
Asia, Europe, and North America [5,7]. These plants feature quadrangular stems, opposite
leaves, and globose to subconical capsules with small seeds [6].

Scrophularia species are known for their antioxidant, anti-inflammatory, and anti-
cancer effects [5,10,11]. S. orientalis extract reduces neuroblastoma cell viability [12]. Other
species, such as S. striata, S. floribunda, and S. lucida, also show anti-proliferative effects on
cancer cells [13,14].

1.2. Echium biebersteinii Laicata

Echium (Boraginaceae) includes ~60 species native to North Africa, Europe, and
the Macaronesian islands [8,9,15]. Although E. biebersteinii has not been extensively
studied, other species in the genus, notably E. amoenum, have received considerable
pharmacological attention.

Various Echium species exhibit sedative, antioxidant, and anxiolytic effects and
are traditionally used to treat respiratory issues, ulcers, and mental disorders [9,16-20].
E. italicum, closely related to E. biebersteinii, is used in Turkey for wound healing and
rheumatic pain [9,21]. E. amoenum, the best studied, shows anticancer effects via rosmarinic
acid-mediated inhibition of STAT3, AKT, and ERK1/2 [22].

1.3. Mentha longifolia (L.) L.

The genus Mentha (mint; Lamiaceae) includes between 18 and 30 species. M. longi-
folia (L.) L. is an aromatic perennial herb widely distributed across Northern Pakistan,
Europe, Nepal, India, Western China, Germany, the United Kingdom, Egypt, Nigeria, and
Turkey [1,2]. Like other Mentha species, it has square stems, aromatic leaves, and spreading
stolons [23,24].

Traditionally used for gastrointestinal, respiratory, and inflammatory conditions,
M. longifolia contains essential oils like menthol with antimicrobial and antifungal ef-
fects [25]. Its flavonoids may have anti-HIV activity [26], and extracts show antioxidant
and anti-proliferative effects on cancer cells [27,28].

Taken together, the Scrophularia, Echium, and Mentha species highlight the broad phar-
macological potential across diverse plant families. Despite phylogenetic differences, they
share antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities, suggesting
that common molecular mechanisms may underlie the observed phenotypes.

To explore this hypothesis, we investigated the biological activity of the three herbal
species using the Caenorhabditis elegans (C. elegans) model system. This model provides a



Pharmaceuticals 2025, 18, 1030

40f24

powerful in vivo platform for studying the effects of bioactive compounds on development,
reproduction, and genomic stability.

Plant-specific solvents were used to prepare the following extracts: E. biebersteinii with
butanol, M. longifolia with dichloromethane, and S. orientalis with water. All extracts were
subsequently resuspended in a standardized DMSO-water mixture to ensure consistency
in treatment conditions.

Comparative analysis revealed that exposure to each of the three herbal extracts
significantly reduced worm survival compared to untreated controls. Treated worms
exhibited larval arrest or lethality, suggesting that impaired survival may be linked to
disruptions in mitotic cell division during larval development. Notably, all three extracts
induced a high incidence of males progeny (HIM phenotype), implying disruption of sex
chromosome segregation and potential interference with meiotic processes.

Further analysis revealed a reduced number of DAPI-stained bodies and abnormal
meiotic progression in the germline of treated worms, providing additional evidence for
impaired meiotic development. Consistently, treatment with any of the three extracts
activated the DNA damage checkpoint response via the ATM/ATR and CHK-1 path-
ways. This response was accompanied by defective germline development, indicating
that the extracts interfere with DNA damage repair mechanisms and ultimately lead to
fertility defects.

To elucidate the molecular basis of these phenotypes, we performed LC-MS analysis
of the herbal extracts. Several shared components—luteolin-7-O-rutinoside, thymol, carvyl
acetate, and menthyl acetate—were identified, each having been previously associated with
oxidative stress regulation, apoptosis induction, or genotoxic effects. These compounds are
likely contributors to the observed disruptions in worm development and reproduction.

Interestingly, S. orientalis and E. biebersteinii shared 79% of their major compounds,
indicating a high degree of chemical similarity. In contrast, M. longifolia shared only 42% of
its compounds with the other two and possessed seven unique compounds (58%), reflecting
a more distinct chemical profile. These differences may underlie the variable biological
responses observed in the C. elegans assays and suggest plant-specific mechanisms of action.

This study reveals that extracts from M. longifolia, S. orientalis, and E. biebersteinii
induce reproductive defects in C. elegans by activating DNA damage checkpoints and
apoptotic pathways. High-resolution imaging of germline architecture linked structural
abnormalities—such as disorganized nuclei, impaired meiotic progression, and reduced
bivalent formation—to molecular stress responses. All three extracts significantly de-
creased survival, caused larval arrest, and increased the high incidence of the male (HIM)
phenotype, indicating chromosomal missegregation.

We identified 21 major compounds, including four shared across the extracts. Among
them, thymol and carvyl acetate were associated with pro-apoptotic activity, while thymol
and luteolin-7-O-rutinoside exhibited antioxidant effects. These findings highlight both
conserved and compound-specific mechanisms of herbal reproductive toxicity and support
the use of C. elegans as a model for functional toxicological screening of traditional remedies.
Also, this study underscores the need to analyze individual phytochemicals within herbal
mixtures to understand their distinct biological effects.

2. Results

All three plant extracts exhibited potent nematocidal activity after 48 h of treatment
at 20 °C, with survival rates ranging from 24% to 38%, compared to 89.4% in the DMSO-
treated control group (Figure 2A). In addition to reduced survivability, extract-treated
worms exhibited a larval arrest or lethality (93% vs. 38% for DMSO and M., p = 0.0002;



Pharmaceuticals 2025, 18, 1030

50f24

93% vs. 29% for S.o., p < 0.0001; 93% vs. 40% for E.b., p < 0.0001; two-tailed t-test), suggesting
that decreased viability is likely linked to mitotic growth defects.
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Figure 2. Extracts obtained from M. longifolia (M.1.), S. orientalis (S.0.), and E. biebersteinii (E.b.) exhibit
marked nematocidal, larval arrest/lethality, and HIM phenotype of C. elegans, without exerting
discernible impact on bacterial growth. (A) M.l,, S.0., and E.b. extracts significantly diminished
survival and larval development while augmenting the high incidence of males (HIM) phenotype
in C. elegans. The effect of herb extracts was evaluated by treating worms with different extracts of
M.IL, S.0., and E.b. and monitoring their survival, adult formation, and male (HIM) phenotype over a
48 h period. Statistical significance was assessed using a two-tailed ¢-test, with * p < 0.05; ** p < 0.01;
*** p <0.001; and *** p < 0.0001, comparing the control (+DMSO) with the treated samples. Nocoda-
zole is a positive control. (B) Assessment of bacterial growth in the presence of herbal extracts. E. coli
OP50 was incubated with 0.03 pg/mL of M.L, S.0., and E.b. extracts—the same concentration used in
C. elegans assays—for 24 h. No significant inhibition of bacterial growth was observed at absorbance
(600nm), indicating that the extracts’ nematocidal effects are unlikely to result from compromised
bacterial food source (p = 0.100 for all three herbs at 24 h of incubation).

Also, all three extracts significantly increased the incidence of the high incidence
of males (HIM) phenotype, indicative of potential sex chromosome missegregation and
aberrant meiotic development (0.29% vs. 3.12% for DMSO and M.1., p = 0.002; 3.47% for
S.0., p = 0.0015; 9.82% for E.b., p = 0.0044; two-tailed t-test; [29]).

To explore whether the choice of initial extraction solvent might influence the biological
activity of the plant extracts, we compared extracts prepared using different solvents in
selected cases. In S. orientalis, extracts obtained with water (S.0-A) and butanol (S.0-B)
showed similar survival-promoting effects (Figure 2A, 37% and 35% survival, respectively).
Likewise, E. biebersteinii extracts prepared with butanol (E.b-B) and water (E.b-A) yielded
comparable survival rates (38% vs. 37%) and produced similar phenotypic outcomes.
These observations suggest that while different solvents may extract distinct chemical
components, their impact on functional outcomes such as survival and stress resistance
may be limited in some cases.

Since C. elegans feeds on E. coli, we tested whether the observed nematocidal ef-
fects might result from indirect toxicity due to impaired bacterial growth. However,
bacterial growth curves showed no significant changes following treatment with any of
the three extracts at 0.03 pg/mL—the same concentration that induced phenotypes in
C. elegans—indicating minimal impact on bacterial proliferation (Figure 2B). After 24 h of



Pharmaceuticals 2025, 18, 1030

6 of 24

incubation, the OD600 values were comparable across groups: 0.12 for DMSO + E. coli,
0.13 with M.1., 0.13 with S.0., and 0.14 with E.b.

In C. elegans, germline nuclei are organized in a well-defined spatial and temporal
pattern during germline development. Actively dividing mitotic nuclei are located at
the distal end within the premeiotic tip (PMT), and as cells move proximally, they enter
meiotic prophase, beginning at the transition zone (TZ), where nuclei display a character-
istic crescent-shaped morphology [29]. To assess effects on germline architecture, adult
hermaphrodites were dissected, DAPI-stained, and analyzed. In controls, germline nu-
clei maintained orderly progression from the premeiotic tip (PMT) through the transition
zone (TZ) to the pachytene region (Figure 3A). However, S.0. and E.b. treatments caused
increased nuclear gaps, especially in the pachytene region, while S.o. additionally affected
the PMT. In contrast, M.I. had no visible impact on nuclear organization (Figure 3B).
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Figure 3. Effects of herbal extracts on nuclear organization, germline development, and fertility-
defective outcomes in C. elegans. S.o. and E.b. herb extracts induced increased spacing between
nuclei within the pachytene region. In contrast, the M.I. extract did not produce any discernible
changes in nuclear spacing or organization. (A) DAPI-stained nuclei during germline development
of 24 h post-L4 hermaphrodite with or without treatment of three herb extracts. Yellow Arrows
indicate crescent-shaped nuclei positioned at pachytene. White arrow indicates chromatin bridge.
Worms exposed to the herbal extracts often exhibited a reduced number of DAPI-stained bivalent
bodies during diakinesis, with a count of 5 indicating five bivalents and a count of 6 indicating
six bivalents. Bar = 2 um. (B) Quantification of the increased nuclear spacing in the PMT and
pachytene stages shown in the panel. (C) Quantification of crescent-shaped nuclei in per gonad
arm is indicated. Asterisks indicate statistically significant differences compared to the control
group. (D) Quantification of DAPI-stained bivalents in the germline. The percentage of bivalents at
—1 position of the oocyte is indicated. Numbers in the brackets in panel A indicate the number of
bivalents. (E) Germline length was measured in three regions: the PMT, TZ, and pachytene. S.o.
extract shortens specific TZ and pachytene stage. (F) Brood size of herb-exposed hermaphrodites.
The number of offspring produced by individual hermaphrodite worms was monitored daily over
a four-day reproductive period following treatment with herbal extracts. Data are presented as
mean + SEM. Statistical significance was assessed using a two-tailed t-test. Asterisks indicate
statistically significant differences compared to the control group.
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Crescent-shaped nuclei, normally restricted to the transition zone (TZ) in controls,
appeared ectopically in both the pre-meiotic tip (PMT) and pachytene regions of extract-
treated worms (Figure 3C). While control animals showed proper localization of these nuclei
to the TZ, all three herbal extracts induced their mislocalization into adjacent germline
regions. This mislocalization increased significantly: M.l. (1.2 vs. 1.9, 1.58-fold, p = 0.0103),
S.0. (1.2 vs. 2.6, 2.17-fold, p = 0.0649), and E.b. (1.2 vs. 2.0, 1.67-fold, p = 0.0088). These
findings suggest premature entry into meiosis and disrupted developmental timing.

At the diakinesis stage, control worms showed the expected six DAPI-stained bivalents,
whereas S.o.-treated animals showed five bivalents in 3.8% of cases, indicating potential
homologous recombination or synapsis defects (Figure 3A,D; [30]). No abnormal bivalent
numbers were detected in M.I. or E.b. groups.

Proper spatial organization of germline nuclei reflects normal developmental pro-
gression, and its disruption is often associated with reduced germline size. A significant
decrease in germline length was observed only in worms treated with S. orientalis extract.
The TZ and pachytene region lengths decreased from 45 pm to 29 pm (Figure 3E, p = 0.0006)
and from 280 um to 247 um (p = 0.0175), respectively. No significant changes were observed
in the PMT length (60 pm vs. 42 um, p = 0.0519).

These developmental defects correlated with reduced fertility, as evidenced by a
decrease in brood size over four days. The most notable reduction occurred on day
3. S.o.-treated worms showed a 3.08-fold decline in brood size (Figure 3F, 148 to 48,
p = 0.0022), while M.I. and E.b. led to 1.59-fold (to 93, p = 0.0022) and 1.44-fold (to 103,
p = 0.0050) reductions, respectively. These results suggest that impaired germline develop-
ment ultimately leads to reduced fertility.

We hypothesized that impaired germline progression would activate the DNA dam-
age checkpoint and initiate DNA repair mechanisms. To determine whether germline
disruption was associated with activation of the DNA damage response, we assessed
expression of DNA damage checkpoint genes. All three extracts significantly upregu-
lated atm-1 and atl-1 mRNA, two key DNA damage checkpoint kinases: M.I. (Figure 4A,
1.52- and 1.51-fold), S.0. (2.26- and 2.24-fold), and E.b. (1.93- and 1.41-fold); p = 0.0007 for
all (Mann-Whitney test).

Consistent with the upregulation of key DNA damage checkpoint genes, an increase
in pCHK-1 foci was observed in the pachytene region following treatment with M.L
(1.6 vs. 4.9, p = 0.0049), S.0. (2.6, p = 0.0076), and E.b. (5.9, p = 0.0049) (Figure 4B).
Additional pCHK-1 foci appeared in the PMT for M.I. (1.7 vs. 2.3, p = 0.0263) and E.b.
(1.7 vs. 6.5, p < 0.0001), but not significantly for S.o. (1.7 vs. 2.0, p = 0.0981).

Activation of the DNA damage checkpoint along with meiotic defects would lead
to DNA damage-mediated cell death in the pachytene stage of the germline in C. elegans.
In line with this idea, apoptosis in the pachytene region increased significantly in S.o.
(Figure 4C, 1 vs. 2.3, p = 0.0008) and E.b. (1 vs. 2.1, p = 0.0024)-treated groups. M.I.
induced a mild, non-significant increase (1 vs. 1.7, p = 0.0776). This apoptotic response was
especially pronounced in worms treated with S. orientalis and E. biebersteinii, underscoring
their stronger detrimental effects on germline integrity.

Among the three, S.0. induced the most pronounced phenotypes—altered nuclear
organization, reduced bivalents, shortened germline regions, decreased brood size, and
elevated expression of DNA damage markers—prompting further analysis of DNA repair.
To further investigate this, we analyzed RAD-51 foci, which mark sites of double-strand
break (DSB) repair [31,32]. RAD-51 foci were significantly increased in S.o.-treated worms
at both the PMT (Figure 4D, 0.04 vs. 0.12, p = 0.023) and late pachytene stages (0.71 vs. 2.14,
p = 0.0028), suggesting impaired double-strand break (DSB) repair (Figure 4D). Although
RAD-51 foci levels were mildly increased in the transition zone, early pachytene, mid
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pachytene, and diplotene stages (0.12 vs. 0.11 in TZ, p = 0.7430; 1.36 vs. 1.64 in early
pachytene, p = 0.1443; 4.14 vs. 4.54 in mid pachytene, p = 0.0752; 0.05 vs. 0.04 in diplotene,
p = 0.7317); these differences were not statistically significant.
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Figure 4. The three-herb extract exposure activates the DNA damage checkpoint pathway and
apoptosis. S.o. extract leads to defective DSB repair in the germline. (A) Quantitative PCR anal-
ysis of DNA damage checkpoint gene expression in whole worms treated with herbal extracts.
Transcript levels of atm-1 and atl-1 were normalized to tba-1 (tubulin) and compared to untreated
controls. (B) Quantification of pCHK-1 foci, a downstream marker of ATM/ATR checkpoint acti-
vation, in the premeiotic tip (PMT) and pachytene region. All three herb treatments significantly
increased pCHK-1 foci in the pachytene stage. Arrows indicate pCHK-1 foci adjacent to chromatin.
Bar =2 um. (C) Quantification of germline apoptosis using acridine orange staining. Apoptotic nuclei
were significantly elevated in the pachytene region following S.o. and E.b. treatments, while M.I.
treatment caused a mild, non-significant increase compared to the control. (D) RAD-51 foci quantifi-
cation to assess double-strand break (DSB) repair. S.o. treatment led to significantly increased RAD-51
foci in both the PMT and late pachytene, indicating impaired DSB repair during both mitotic and
meiotic stages. All statistical analyses were performed using two-tailed Mann—-Whitney tests. Data
are presented as mean + SEM from biological replicates. Asterisks indicate statistically significant
differences compared to the control group.

To explore the molecular basis of the distinct phenotypic effects observed in C. ele-
gans, we conducted LC-MS analysis on each of the three herbal extracts, as detailed in our
previous reports [33-35]. This analysis identified 21 major compounds across the extracts
(Figure 5), with four compounds—Iluteolin-7-O-rutinoside, thymol, carvyl acetate, and
menthyl acetate—common to all. M. longifolia contained the highest number of unique
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compounds, including caryophyllene, genistein, and ursolic acid, totaling seven unique
constituents. S. orientalis featured one exclusive compound, resveratrol, while E. bieber-
steinii uniquely contained vitexin-4’-rhamnoside. These findings highlight both common
and unique chemical profiles that may explain the distinct biological activities of the
extracts (Table 2).

Luteolin-7-O-Rucoside Detected Detected Detected
Thymol Detected Detected
Carvyl acetate B ot ] cted
( . 1ongitolia s orientas | PE—

1 Resveratrol Luteolin Detected Detected Not Detected
Caryophyllene Detected Not Detected Not Detected

Geranium lignin/Diosmetin Detected Not Detected Not Detected

i 1 7 Genistein Detected Not Detected Not Detected
Caryophyllene _ Dihydrocarvone Isoquercetin Detected Not Detected Not Detected
gera_mtiu_m lignin  Luteolin 4 T Naringin Detected Nt Dtected Nt Detected
enistein . .
Isoquercetin Luteolin 7-O-Rucoside tIy:SZIeCn:CId Ursolic acid Detected Not Detected Not Detected
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Ursolic acid Cariylacets Homoplantain E.biebersteinii | onyarocarvone | oroeeces .
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M. So. Edb.
Figure 5. Comparative LC-MS analysis of major compounds in three herbal extracts. Venn diagram
and heat map summarizing the 21 major compounds identified across M. longifolia, S. orientalis,
and E. biebersteinii. Four compounds—luteolin-7-O-rutinoside, thymol, carvyl acetate, and menthyl
acetate—were common to all three extracts. M. longifolia contained seven unique major compounds.
S. orientalis had one unique compound, resveratrol, while E. biebersteinii uniquely possessed vitexin-
4/-rhamnoside. Compound identification was performed based on methods previously described
(see Materials and Methods [33-35]).
Table 2. Reported biological functions of major compounds in three herbal extracts. Each
compound—such as antioxidant, DNA damage response/repair, antitumor, and anti-inflammatory
functions—is based on previous reports. However, many compounds remain insufficiently char-
acterized and require further investigation. LC-MS spectra of the phytochemicals are provided in
Supplementary Datas S3 and S4.
.. DNA Damage . .
No Compounds Antioxidant 8¢ Antitumor  Anti-Inflammatory
Response/Repair
1 Luteolin-7-O-Rucoside [36] [37] [38] [39]
2 Thymol [40] [41] [42] [43]
3 Carvyl acetate
4 Menthyl Acetate [44]
5 Luteolin [45] [46] [47] [48]
6 Caryophyllene [49] [50] [51] [52]
Geranium
7 L . . 53 54 55 56
lignin/Diosmetin [53] [54] [55] [56]
Genistein [57] [58] [59] [60]

Isoquercetin [61] [62] [63]
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Table 2. Cont.

No Compounds Antioxidant Rl:sl;)loAnls)ea;II?:g:ir Antitumor Anti-Inflammatory
10 Naringin [64] [65] [66]

11 Ursolic acid [67] [68] [69] [70]
12 Phlogistic acid

13 Dihydrocarvone

14 Resveratrol [71] [72] [73] [74]
15 Aucubin [75] [76] [77]
16 Lycopene [78] [79] [80] [81]
17 Linoleic acid [82] [83] [84]
18 Misoprostol [85]

19 Homoplantain [86]
20 Vitexin-4-O-glucoside [87]

21 Vitexin-4-rhamnoside [88]

Since all three herbs produced common phenotypes—upregulation of DNA damage
checkpoint regulators and elevated germline apoptosis—we next investigated whether
the four shared compounds could contribute to these effects. Specifically, we examined
the expression levels of key DNA damage checkpoint genes following treatment with
each compound.

Thymol and carvyl acetate significantly upregulated atm-1 and atl-1 (Figure 6A, thymol:
2.0- and 1.7-fold; carvyl acetate: 1.58- and 1.8-fold; p = 0.0005 for all), whereas luteolin-7-O-
rutinoside and menthyl acetate had no significant effect (luteolin-7-O-rutinoside: p = 0.5396
for atm-1, p = 0.1870 for atl-1; menthyl acetate: p = 0.6029 for atm-1, p = 0.1459 for atl-1).

A == control E= control == control == control
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*
15 2.5 > 2.0 * 18 15 b
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Figure 6. Functional characterization of shared herbal compounds reveals their roles in DNA damage
response, apoptosis, and antioxidant activity. (A) Expression levels of DNA damage checkpoint genes
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(atm-1 and atl-1) in response to treatment with four common herbal compounds. Young adult
hermaphrodites were treated with luteolin-7-O-rutinoside (18 pg/mL), thymol (450 ug/mL), carvyl
acetate (8 pug/mL), or menthyl acetate (10 ug/mL), and qRT-PCR was performed to assess expression
of atm-1 and atl-1. Thymol and carvyl acetate significantly upregulated both genes, whereas luteolin-
7-O-rutinoside and menthyl acetate showed no significant effect. Data are presented as fold change
relative to control (mean & SEM, n > 20 animals per group). (B) Quantification of germline apoptosis
in the pachytene region following compound treatment. Germline apoptosis was measured in wild-
type C. elegans treated with the four shared compounds. Thymol and carvyl acetate significantly
increased apoptotic cell counts, consistent with their induction of atm-1 and atl-1 checkpoint gene
expression. Luteolin-7-O-rutinoside and menthyl acetate showed no significant effects. Data are
presented as mean apoptotic nuclei per gonad arm. Mean £+ SEM, n > 20 animals per group.
(C) DPPH radical scavenging activity of M., S.0., and E.b. herb extracts at increasing concentrations.
All three extracts exhibited dose-dependent antioxidant activity, with E.b. showing the strongest
inhibition (39.15% inhibition at 3 ug/mL, p < 0.0001), followed by S.0. (30.95%, p < 0.0001) and
M.1. (23.05%, p < 0.0001). (D) Antioxidant activity of four common constituents found in the herb
extracts at three different doses: luteolin-7-O-rutinoside (6-18 pg/mL), thymol (150-450 pg/mL),
carvyl acetate (1-8 pg/mL), and menthyl acetate (1-10 pug/mL). Luteolin-7-O-rutinoside and thymol
showed dose-dependent radical scavenging activity, with thymol demonstrating stronger inhibition
(up to 18.08%). In contrast, carvyl acetate and menthyl acetate showed negligible activity at all tested
concentrations. Data are presented as mean £ SEM. Statistical significance was calculated using
two-tailed Mann—-Whitney test. Asterisks indicate statistically significant differences compared to the
control group.

To determine whether these compounds also influence germline apoptosis, we quan-
tified DNA damage-induced apoptosis. Thymol and carvyl acetate promoted germline
apoptosis (Figure 6B, thymol: 1.33 to 2.47, p < 0.0001; carvyl acetate: 1.3 to 1.7, p = 0.0359). In
contrast, luteolin-7-O-rutinoside induced only a marginal, non-significant change (1.05-fold,
p = 0.7281), and menthyl acetate showed no effect (p = 0.9797). Thus, thymol and carvyl
acetate may mediate the pro-apoptotic effects of the extracts. These findings suggest that
among the common constituents, thymol and carvyl acetate may play an active role in
DNA damage signaling and apoptosis, thereby contributing to the biological activities of
the herb extracts.

Given antioxidant properties associated with these herbs (Figures 1 and 5), we next
assessed their antioxidant capacity using the DPPH radical scavenging assay. All three
herb extracts exhibited dose-dependent antioxidant activity, with E. biebersteinii showing
the strongest inhibition (Figure 6C).

To further dissect the contribution of individual compounds, we assessed the antioxi-
dant activity of the four common constituents. Among them, luteolin-7-O-rutinoside and
thymol displayed measurable radical-scavenging activity. Luteolin-7-O-rutinoside pro-
duced a modest but significant dose-dependent inhibition (Figure 6D, 2.15% at 12 pg/mL,
p <0.0001; 3.17% at 18 ug/mL, p < 0.0001). In contrast, thymol exhibited a much stronger
antioxidant effect, reaching 18.05% inhibition at 300 ug/mL and 18.08% at 450 ug/mL
(p < 0.0001 for both). Meanwhile, carvyl acetate and menthyl acetate did not show sig-
nificant antioxidant activity at tested concentrations (carvyl acetate: max 0.37%, p > 0.87;
menthyl acetate: max 0.55%, p > 0.13), indicating they are unlikely to contribute to the
antioxidant effects of the extracts.

3. Discussion

3.1. Herbal Extracts Induce Germline-Specific DNA Damage Checkpoint Activation and Meiotic
Defects in C. elegans

All three herbal extracts—AM. longifolia, S. orientalis, and E. biebersteinii—exhibited
strong nematocidal activity, reducing viability and inducing developmental arrest in
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C. elegans. These phenotypes were accompanied by a significant increase in the high
incidence of males (HIM) phenotype, indicative of X chromosome nondisjunction and acti-
vation of DNA damage checkpoint and defective DNA repair (Figures 2—4). The observed
nematocidal activity and the associated HIM phenotype were not attributable to indirect
E. coli-mediated toxicity, as bacterial growth remained unaffected by extract treatment.

Our multi-layered analysis—linking organism-level phenotypes to cellular, genetic,
and molecular markers—demonstrates that these herbal extracts induce germline-specific
defects through activation of conserved DNA damage checkpoint pathways. This systems-
level approach offers a comprehensive view of the reproductive toxicity caused by
botanical mixtures.

3.2. Herbal Extracts Lead to Defective Mitotic and Meiotic Progression, Impaired DNA Repair, and
DNA Damage Checkpoint Activation, Resulting in Germline Apoptosis

DAPI staining of dissected gonads revealed that S.0. and E.b. disrupted the spatial
organization of germline nuclei. The presence of crescent-shaped nuclei beyond the transi-
tion zone, as well as increased nuclear gaps, suggest premature meiotic entry and impaired
control of the mitosis-to-meiosis switch. S.o. treatment additionally disrupted the premei-
otic tip (PMT), pointing to broader developmental dysregulation. These morphological
disruptions correlate with reduced germline length and decreased fertility.

All three extracts induced transcriptional upregulation of key DNA damage checkpoint
regulators—atm-1 and atl-1—with accompanying increases in pCHK-1 foci and germline
apoptosis. These effects were particularly pronounced in S.0. and E.b.-treated animals. This
suggests that the extracts induce genotoxic stress or replication challenges sufficient to
activate the DNA damage response, leading to checkpoint-mediated apoptotic removal of
compromised germ cells.

Although M.I. showed milder phenotypes, it still significantly elevated checkpoint
gene expression and pCHK-1 foci, indicating that even low-grade germline stress is suffi-
cient to engage surveillance pathways.

Among the three extracts, S.0. produced the most severe phenotypes, including a
reduction in diakinesis-stage bivalents, indicative of defective homolog pairing or recombi-
nation. Furthermore, RAD-51 foci were significantly elevated in the PMT and pachytene
stages following S. orientalis treatment, suggesting impaired double-strand break (DSB)
repair or the persistence of recombination intermediates. However, we cannot exclude
the possibility that this increase reflects the induction of a greater number of DSBs at
this stage. These disruptions likely compound DNA damage signaling, culminating in
heightened apoptosis.

3.3. Phytochemical Composition Underlies the Biological Activities of Herbal Extracts:
Four Common Compounds Identified—Thymol, Carvyl Acetate, Luteolin-7-O-Rutinoside, and
Menthyl Acetate

LC-MS profiling revealed both shared and species-specific compounds across the
three extracts. Notably, four compounds—thymol, carvyl acetate, luteolin-7-O-rutinoside,
and menthyl acetate—were common to all extracts; of these, thymol and carvyl acetate
significantly upregulated atm-1 and atl-1 and increased germline apoptosis, effectively
recapitulating the effects of the full extracts. In contrast, luteolin-7-O-rutinoside and men-
thyl acetate showed no such activity, underscoring the functional specificity of individual
phytochemicals. This finding suggests that a subset of shared compounds may mediate the
core genotoxic effects observed across all extracts, while species-specific compounds and
the combination of compounds may modulate their severity.
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3.4. Phytochemical Overlap Explains Parallel DNA Damage Responses Induced by
S. orientalis and E. biebersteinii Extracts

We next asked whether the phytochemical similarities between extracts could explain
their shared phenotypic profiles. Interestingly, S.0. and E.b. exhibited the most phenotypic
similarity among the three extracts, manifesting nearly indistinguishable effects on germline
disorganization, apoptosis, and checkpoint activation. This similarity is supported by their
phytochemical profiles: 12 out of 13 major compounds in S.0. were also found in E.b.,
suggesting a shared chemical basis for their biological effects.

In addition to the shared compounds, S.0. and E.b. both contain misoprostol and
aucubin, which have been linked to modulation of DNA damage and repair pathways.
Misoprostol has demonstrated radioprotective effects in mammalian models by mitigating
DNA damage-induced apoptosis [89], while aucubin has been implicated in topoisomerase-
mediated DNA repair regulation and has shown therapeutic relevance in cancer set-
tings [90]. These compounds may enhance or synergize with the shared DDR-active
constituents to produce stronger germline toxicity.

Moreover, resveratrol, uniquely present in S.0., is a well-known polyphenol with
multiple pharmacologic activities, including promotion of IR-mediated apoptosis [91,92].
Resveratrol has been shown to sensitize tumor cells to radiation and enhance DNA
damage-induced apoptosis, and may contribute to the severity of phenotypes seen in
S.o.-treated animals.

3.5. Uncoupling Antioxidant Activity from Germline Toxicity in Herbal Extracts

While genotoxicity emerged as a major effect of the extracts, we also considered
whether antioxidant properties might modulate or counterbalance these effects. All three
extracts showed dose-dependent antioxidant activity in DPPH assays, with E.b. being the
most potent. However, no clear relationship was observed between the genotoxic and
apoptotic effects and antioxidant capacity. This disparity may be due to differences in
compound bioavailability, metabolism, or the presence of other bioactive constituents that
may influence cytotoxic effects. Among shared compounds, thymol contributed to both
antioxidant and pro-apoptotic activity, whereas carvyl acetate induced apoptosis without
radical-scavenging effects.

These findings indicate that the biological effects of the extracts cannot be explained
solely by oxidative stress modulation. Instead, distinct compounds within each extract
exert functionally divergent effects—some activating protective antioxidant pathways,
others engaging pro-apoptotic DNA damage signaling.

Our findings reveal that the germline phenotypes and fertility defects observed in
C. elegans upon treatment with M. longifolia, S. orientalis, and E. biebersteinii extracts are the
result of both shared and species-specific phytochemicals. Among the four compounds
common to all three extracts, thymol and carvyl acetate specifically induced DNA dam-
age checkpoint activation and pachytene-stage apoptosis, while thymol and luteolin-7-O-
rutinoside contributed to antioxidant activity. The identification of carvyl acetate as a potent
apoptosis inducer without antioxidant activity highlights its distinct and potentially toxic
function. Meanwhile, species-specific constituents—such as ursolic acid and caryophyllene
in M. longifolia, or resveratrol in S. orientalis—may contribute additional, non-overlapping
biological effects.

Importantly, this study illustrates how the interaction between shared and unique
compounds drives the complex and divergent biological outcomes of each herbal extract.
By establishing a clear correlation between LC-MS-derived chemical profiles and in vivo
physiological effects, we provide a mechanistic framework for understanding how multi-
component herbal formulations act in biological systems. In particular, we examined the
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biological effects of four compounds—Iuteolin-7-O-rutinoside, thymol, carvyl acetate, and
menthyl acetate—selected for their functional relevance. Notably, all four were commonly
identified across the three herbs. Building on these findings, future studies will investigate
various combinations of these compounds to explore potential synergistic or antagonistic
effects, as part of a broader effort to elucidate the complex bioactivity of the extracts.

4. Materials and Methods
4.1. Strains and Alleles

C. elegans strains were cultured at 20 °C under standard laboratory conditions, follow-
ing established protocols [93]. The N2 Bristol strain, used as the wild-type control, was
obtained from the Caenorhabditis Genetics Center (CGC).

4.2. Herb Extraction

Herbal materials were sourced from Armenia and processed as previously re-
ported [33,35]. In summary, plant samples were washed, air-dried, and coarsely ground
before undergoing methanol extraction. The resulting methanolic extract was concen-
trated, reconstituted in 90% aqueous methanol, and partitioned with hexane. The residual
hydroalcoholic phase was freed of the solvent in vacuo, suspended in water, and then
sequentially extracted with dichloromethane and butanol to afford a gross separation into
hexane-, dichloromethane-, butanol-, and water-soluble fractions. Solvent selection was
tailored to each plant species: E. biebersteinii was extracted using butanol, M. longifolia with
dichloromethane, and S. orientalis with water.

All hexane-based extracts were redissolved in DMSO, standardized to 1 mg/mL,
and then diluted in M9 buffer to a working concentration of 0.03 pg/mL for most as-
says, unless otherwise noted. This concentration was determined based on prelimi-
nary dose-dependency tests. In preliminary tests, 0.01% (v/v) butanol and hexane were
applied as solvent controls and showed no observable effects on C. elegans survivabil-
ity or development. DMSO (<0.1%) was used as the standard vehicle control in all
subsequent experiments.

4.3. Survival, Larval Arrest/Lethality, and High Incidence of Males (HIM) Assay

Synchronized L1 larvae were prepared by collecting gravid hermaphrodites from
NGM plates, using the method described by Kim and Colaiacovo [31,94]. The larvae were
then exposed to 180 puL of herbal extract solution in 96-well plates. Following brief agitation,
the plates were incubated at 20 °C for 24 h, with phenotypic observations extending up to
48 h. Worm survival was determined based on movement after 24 h of treatment. Brood size
was calculated by counting the total number of eggs laid per worm over a 4-5 day period
following the L4 stage. Larval arrest or lethality was expressed as the percentage of hatched
larvae that failed to reach adulthood. The high incidence of males (HIM) phenotype was
assessed by calculating the percentage of males among the adult population. Differences
among genotypes were analyzed using the two-tailed Mann—-Whitney test, applying a
95% confidence interval (C.1.). Each experiment was independently replicated three times
to ensure consistency. This procedure was modified from the protocol established by
Kim and Colaiacovo [94].

4.4. LC-MS/MS Analysis

Liquid chromatography—tandem mass spectrometry (LC-MS/MS) was carried out
according to established protocols [33,35]. Briefly, the analysis was conducted using a
Shimadzu LC-30A system equipped with a C18 column, with all procedures performed
by YanBo Times (Beijing, China). Compound identification was verified through compari-
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son with a standardized reference database. All detected compounds were authenticated
through this stringent methodology. The English names in the LC-MS output were trans-
lated from the original Chinese names supplied by YanBo Times.

4.5. Immunofluorescence Assay

Whole-mount gonads were stained for immunofluorescence following previously
described methods [31,32,95]. The primary antibody used was rabbit anti-phospho-CHK-1
(Ser345) at a 1:250 dilution (Cell Signaling Technology, Danvers, MA, USA), followed by
Cy3-conjugated anti-rabbit secondary antibody at a 1:300 dilution (Jackson, Archbold, OH,
USA). Fluorescent images were captured using a Nikon Eclipse Ti2-E (Nikon, Tokyo, Japan)
inverted microscope paired with a DS-Qi2 camera. Imaging was conducted at 0.2 pm
Z-steps using a 60 x objective lens with an additional 1.5x magnification. Image processing
and deconvolution were performed using Nikon NIS Elements software (Ver 4.3). Figures
display either full or partial nuclear projections.

4.6. pCHK-1 Foci Quantification

The number of pCHK-1 foci was quantified following established protocols ([31,32]).
For each condition, five to ten germlines were examined. Statistical analysis was per-
formed using either a two-tailed Mann-Whitney U test or a standard t-test, applying a 95%
confidence interval.

4.7. Assessment of Germline Apoptosis

Germline apoptosis was evaluated via acridine orange staining in synchronized an-
imals, 20 h after reaching the L4 stage, as previously described [96]. Between 20 and
30 gonads were scored per condition using a Nikon Ti2-E fluorescence microscope. Statisti-
cal comparisons were conducted using the two-tailed Mann-Whitney test, with significance
set at a 95% confidence level.

4.8. gRT-PCR

Total RNA was isolated from young adult hermaphrodites and reverse-transcribed
into cDNA using the ABscript II First Strand Synthesis Kit (ABclonal, RK20400, Woburn,
MA, USA), as previously described [97,98]. qRT-PCR was carried out using ABclonal 2X
SYBR Green Fast Mix (RK21200) on the LineGene 4800 system (BIOER, FQD48A, Hangzhou,
China). Thermal cycling conditions included an initial denaturation at 95 °C for 2 min,
followed by 40 amplification cycles at 95 °C for 15 s and 60 °C for 20 s, with extension.
A melting curve analysis (60-95 °C) was performed to confirm product specificity. The
tba-1 gene, which encodes tubulin, was used as an internal reference, based on previously
published C. elegans microarray data. All PCR reactions were repeated at least twice to
ensure reproducibility.

4.9. Chemical Reagents

All reagents used in this study were of analytical grade and were purchased from com-
mercial suppliers, including Sigma-Aldrich, St. Louis, MO, USA. The following chemicals
were utilized: hexane (CAS No. 110-54-3), dichloromethane (CAS No. 75-09-2), butanol
(CAS No. 71-36-3), dimethyl sulfoxide (DMSO; CAS No. 67-68-5), DAPI (CAS No. 28718-90-3),
luteolin-7-O-rutinoside (CAS No. 20633-84-5), thymol (CAS No. 89-83-8), carvyl acetate
(CAS No. 97-42-7), menthyl acetate (CAS No. 89-48-5), nocodazole (CAS No. 31430-18-9),
and acridine orange (CAS No. 65-61-2).
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4.10. Monitoring the Growth of E. coli

The growth of E. coli OP50 in the presence of herb extracts was assessed by measuring
its optical density (OD) at 600 nm, following the method described in [35,99]. To deter-
mine the antibacterial effects, bacterial growth was monitored using 0.03 pg/mL of each
herb extract.

4.11. Quantitative Analysis of RAD-51 Foci

Quantitation of RAD-51 foci was performed as described in [95]. RAD-51 foci
were quantified in germline nuclei of age-matched hermaphrodites, fixed 24 h post-
L4; five and ten germlines were scored for each treatment. Statistical comparisons be-
tween treatments were performed using the two-tailed Mann-Whitney or t-test with a
95% confidence interval.

4.12. DPPH Free Radical Scavenging Assay

The free radical scavenging capacity was determined using DPPH, as described
in [100,101]. In brief, a 0.004% DPPH solution was added to achieve a final volume of 3 mL.
The mixture was then incubated for 30 min at room temperature before the absorbance was
measured at 517 nm.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph18071030/s1, Data S1: Traditional Uses of Mentha, Scrophularia,
and Echium Species; Data S2: Reported Bioactivities of Genus Mentha, Scrophularia, and Echium;
Data S3: LC-MS spectra of phytochemicals identified in S. orientalis, M. longifolia, and E. biebersteinii.
The x-axis represents retention time (RT, in minutes), and the y-axis shows relative intensity (%).
Each peak corresponds to a phytochemical detected in the respective plant extract. Spectra are
provided for both positive (Pos) and negative (Neg) ionization modes for each extract. Analyses
were performed using a Shimadzu LC-30A system equipped with a C18 column, with all procedures
conducted by YanBo Times; Data S4: Summary of LC-MS analysis of 21 identified compounds
from three herb extracts. The table includes each compound’s component name, CAS number,
molecular formula, fragment ions (m/z) derived from MS analysis, adduct type, and retention time
(RT). For each of the three herbal extracts—Mentha longifolia (M.1.), Scrophularia orientalis (S.o.), and
Echium biebersteinii (E.b.)—the peak intensity (%) measured by LC-MS and the corresponding relative
quantity (%) (normalized to the most abundant compound in each extract, set as 100%) are shown.
References [102-183] cited in Supplementary Materials.
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